Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Single cell analysis of proliferation and movement of cancer and normal-like cells on nanowire array substrates

Författare:
  • Zhen Li
  • Sofia Kamlund
  • Till Ryser
  • Mercy Lard
  • Stina Oredsson
  • Christelle N. Prinz
Publiceringsår: 2018
Språk: Engelska
Sidor: 7042-7049
Publikation/Tidskrift/Serie: Journal of Materials Chemistry B
Volym: 6
Nummer: 43
Dokumenttyp: Artikel i tidskrift
Förlag: Royal Society of Chemistry

Abstract english

Nanowires are presently investigated in the context of various biological and medical applications. In general, these studies are population-based, which results in sub-populations being overlooked. Here, we present a single cell analysis of cell cycle and cell movement parameters of cells seeded on nanowires using digital holographic microscopy for time-lapse imaging. MCF10A normal-like human breast epithelial cells and JIMT-1 breast cancer cells were seeded on glass, flat gallium phosphide (GaP), and on vertical GaP nanowire arrays. The cells were monitored individually using digital holographic microscopy for 48 h. The data show that cell division is affected in cells seeded on flat GaP and nanowires compared to glass, with much fewer cells dividing on the former two substrates compared to the latter. However, MCF10 cells that are dividing on glass and flat GaP substrates have similar cell cycle time, suggesting that distinct cell subpopulations are affected differently by the substrates. Altogether, the data highlight the importance of performing single cell analysis to increase our understanding of the versatility of cell behavior on different substrates, which is relevant in the design of nanowire applications.

Keywords

  • Medical Materials
  • Nano Technology
  • Cancer and Oncology
  • Cell and Molecular Biology

Other

Published
  • ISSN: 2050-7518
Sofia Kamlund
E-post: sofia [dot] kamlund [at] biol [dot] lu [dot] se

Doktorand

Funktionell zoologi

4

Forskargrupp

Zoofysiologi