Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Analyzing tumor gene expression profiles

Författare:
  • Carsten Peterson
  • Markus Ringnér
Publiceringsår: 2003
Språk: Engelska
Sidor: 59-74
Publikation/Tidskrift/Serie: Artificial Intelligence in Medicine
Volym: 28
Nummer: 1
Dokumenttyp: Artikel i tidskrift
Förlag: Elsevier

Abstract english

A brief introduction to high throughput technologies for measuring and analyzing gene expression is given. Various supervised and unsupervised data mining methods for analyzing the produced high-dimensional data are discussed. The main emphasis is on supervised machine learning methods for classification and prediction of tumor gene expression profiles. Furthermore, methods to rank the genes according to their importance for the classification are explored. The approaches are illustrated by exploratory studies using two examples of retrospective clinical data from routine tests; diagnostic prediction of small round blue cell tumors (SRBCT) of childhood and determining the estrogen receptor (ER) status of sporadic breast cancer. The classification performance is gauged using blind tests. These studies demonstrate the feasibility of machine learning-based molecular cancer classification.

Keywords

  • Biophysics
  • biomformatics
  • artificial neural networks
  • diagnostic prediction
  • target identification
  • drug
  • microarray
  • genes

Other

Published
  • ISSN: 1873-2860
Markus Ringnér
E-post: markus [dot] ringner [at] biol [dot] lu [dot] se

Forskningsingenjör

Molekylär cellbiologi

B-A317

Sölvegatan 35, Lund

4