Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

An evaluation of using ensembles of classifiers for predictions based on genomic and proteomic data

Författare:
  • Markus Ringnér
  • Peter Johansson
Publiceringsår: 2006
Språk: Engelska
Sidor:
Dokumenttyp: Övrigt

Abstract english

Classification of expression profiles to predict disease characteristics of for example cancer is a common application in high-throughput gene and protein expression research. Cross-validation is often used to optimize design of classifiers, with the aim to construct an optimal single classifier. In this work, we explore if classification performance can be improved by aggregating classifiers into ensembles that use committee votes for classification.

We investigated if combining classifiers into ensembles improved classification performance compared to single classifiers. A couple of commonly used classifiers, nearest centroid classifier and support vector machine, were evaluated using four publicly available data sets. We found ensemble methods generally performed better
than corresponding single classifiers.

Keywords

  • Biochemistry and Molecular Biology
  • Other Physics Topics

Other

Published
Markus Ringnér
E-post: markus [dot] ringner [at] biol [dot] lu [dot] se

Forskningsingenjör

Molekylär cellbiologi

B-A317

Sölvegatan 35, Lund

4