Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Microarray-based cancer diagnosis with artificial neural networks

  • Markus Ringnér
  • Carsten Peterson
Publiceringsår: 2003
Språk: Engelska
Sidor: 30-30
Publikation/Tidskrift/Serie: BioTechniques
Volym: 34
Nummer: Suppl
Dokumenttyp: Artikel i tidskrift
Förlag: Informa Healthcare

Abstract english

In recent years, the advent of experimental methods top robe gene expression profiles of cancer on a genome-wide scale has led to widespread use of supervised machine learning algorithms to characterize these profiles. The main applications of these analysis methods range from assigning functional classes of previously uncharacterized genes to classification and prediction of different cancer tissues. This article surveys the application of machine learning algorithms to classification and diagnosis of cancer based on expression profiles. To exemplify the important issues of the classification procedure, the emphasis of this article is on one such method, namely artificial neural networks. In addition, methods to extract genes that are important for the performance of a classifier, as well as the influence of sample selection on prediction results are discussed.


  • Biophysics


  • ISSN: 0736-6205
Markus Ringnér
E-post: markus [dot] ringner [at] biol [dot] lu [dot] se


Molekylär cellbiologi


Sölvegatan 35, Lund